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Clinical studies to prevent the development of food allergy have
recently helped reshape public policy recommendations on the
early introduction of allergenic foods. These trials are also
prompting new research, and it is therefore important to address
the unique design and analysis challenges of prevention trials.
We highlight statistical concepts and give recommendations that
clinical researchers may wish to adopt when designing future
study protocols and analysis plans for prevention studies. Topics
include selecting a study sample, addressing internal and external
validity, improving statistical power, choosing alpha and beta,
analysis innovations to address dilution effects, and analysis
methods to deal with poor compliance, dropout, and missing
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The prevalence of food allergy has been on the rise over the
last 30 years with 6% to 8% of children being affected world-
wide.1,2 Currently, there is no cure for IgE-mediated food allergy
and the main treatment remains avoidance; thus, understanding
the cause and developing strategies for the prevention of allergy
has been at the forefront of current allergy research. The past
decade has seen an increase in trials aimed at the prevention of
food allergy through early life nutritional interventions.3-6 These
prevention trials, in contrast to therapeutic trials, apply to sub-
jects at risk of developing a future food allergy and therefore tend
to be drawn from an at-risk pediatric population.

Although prevention trials can lead to valuable public health
recommendations (eg, childhood vaccination or early consump-
tion of peanuts7), their design, implementation, and interpretation
pose unique and significant challenges. Prevention trials often take
longer to complete, show smaller treatment effects, and require
larger numbers of participants than do studies designed to test a
therapy on a preexisting illness. Because participants are ostensibly
healthy, the risk-benefit ratio of aggressive intervention is often
shifted toward safer, more conservative strategies. Conservative
interventions can lead to smaller treatment effects and therefore
require larger sample sizes to achieve adequate power. Moreover, a
drug’s side effects are experienced by only the small number of
people treated with the drug. Conversely, harmful effects resulting
from a broadly applied public policy recommendation can elimi-
nate the public utility of the intervention because adverse events
will be experienced over a large portion of the population.

The data analysis of prevention studies can also present unique
challenges. Because a large proportion of the study sample typically
does not develop the disease of interest, these participants can
dilute or add variability to the metrics used to evaluate safety and
efficacy. Prevention trials are often longer in duration to coincide
with the incidence of disease. Unfortunately, participants enrolled
in lengthy studies tend to have higher rates of dropout and lower
rates of compliance, especially if they perceive little or no imme-
diate benefit.8 Nevertheless, the many challenges that exist with
conducting and analyzing prevention trials can be addressed with
appropriate study design features and statistical methodologies.

This article focuses on the statistical challenges of food allergy
prevention studies. However, the concepts apply to the design
and analysis of nearly all prevention trials and particularly to
diseases with low prevalence. Examples are drawn from 2 recently
published randomized controlled prevention trials: Learning
Early About Peanuts (LEAP) and Enquiring About Tolerance
(EAT). Briefly, the LEAP and EAT studies enrolled 640 and
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1303 infants, and took 7 and 7.5 years to complete, respectively.
The LEAP study participants were recruited from an at-risk
population (severe eczema and/or egg allergy) and the EAT
study participants were recruited from a general population of
exclusively breast-fed infants. At completion of the trials, the
peanut allergy prevalence in the control group was 17.2% in the
LEAP study and 2.5% in the EAT study, and compliance with
the intervention was 92% and 54%, respectively. Using these
trials as the main examples, topics in the following areas of food
allergy prevention studies will be addressed:

1. Study Design: enrollment criteria, external validity
2. Statistical Power: choice of alpha and beta and 1- or 2-sided

hypothesis testing
3. Analysis innovations to address dilution effects
4. Analysis methods to deal with poor compliance, dropout, and

missing data

STUDY DESIGN

Whom to enroll?
Determining whom to enroll for a prevention study involves

additional challenges not typically present for a therapeutic trial.
p=
>9

. Three sampling strategies (different shades of green) are sh
picted by the 2 red squares out of a 100 green squares). The
mly sampled to produce a representative sample with a 2%
iteria is more restrictive and the proportion with peanut allergy
els (white blocks) are from Fisher exact tests between the
ce at alpha ¼ 0.05. Table I and Figure 1 demonstrate a dra
espite the intervention effect (80%) and sample size (n ¼ 1
When testing a new drug or therapy, participants with the disease of
interest need to be identified and enrolled. Conversely, in prevention
trials, participants must be enrolled before the illness presents. If
disease prevalence is low (eg, peanut allergy at w2%), a random
sample from the overall population needs to be very large to provide
sufficient power. Moreover, the large proportion of participants
unaffected by an illness often perceives less immediate study benefit.
Thus, they may be unmotivated to comply with an intervention and
continue study participation. Poor compliance and dropout impair
analysis interpretation by decreasing statistical power and producing
results that lack internal or external validity. Therefore, selecting a
high-risk population can offer key advantages. Figure 1 illustrates a
simulation study in which the intervention effect (80%) and sample
size (n ¼ 1000) are held constant. The selection criteria are made
more restrictive to enrich the study sample with a higher proportion
of, for example, peanut allergy. The analysis demonstrates vastly
lower P values with more restrictive enrollment criteria. This same
concept also applies to subgroup and covariate-adjusted analyses,
which can be specified using baseline factors known to be associated
with the outcome of interest. These subgroups and covariates, if
specified a priori, can form more powerful primary analysis com-
parisons within a larger, population-based sample.

Conversely, a study that is too restrictive in its selection criteria
can lack external validity if the participants poorly represent the
general population. A method to address this shortfall is to sample
from the overall population using factors (eg, eczema severity)
known to be associated with the development of food allergy. If the
resulting sample has a wide distribution of the factor and the
approximate distribution is known in the larger population, these
prevalence estimates can be used to back-calculate the intervention
p=0.04
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own from an overall population with a prevalence of peanut allergy
outer band represents a population-based study where all squares
prevalence of peanut allergy. As the bands move inward, the se-
increases from 2% to 4% to 12.5%. The annotated P values and
simulated control and treatment groups using a 2-sided test of
matic increase in statistical power with more focused selection
000) being held constant in each simulation.



TABLE I. Simulation study parameters and results

Sample

size

Treatment

effect

Prevalence in

population

Risk

group

Prevalence in

study sample

Number allergic in

the control group

Number allergic in

the treated group

Risk

difference Power

Fisher exact

test P value

1000 80% 2% High 12.5% 63 13 10.0% >99% 1.3 � 10�9

Moderate 4.1% 20 4 3.3% 91.0% .0014

Low 2.0% 10 2 1.6% 57.0% .04
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effect from the study sample onto the overall population. Koplin
et al9 provide a recent example of this exercise using the LEAP and
HealthNuts studies. However, this recommendation assumes that
the intervention is effective in both high- and low-risk populations.
If the pathophysiology is such that, for example, the high-risk group
has progressed too far toward the development of the disease of
interest, the intervention may be “too late” to prevent the onset of
disease. In this scenario, the selection of a high-risk population may
be detrimental to the intervention’s effectiveness and subgroup an-
alyses may be specified to address this shortcoming. As described by
Permutt et al,10 stratified randomization is not necessary when
performing a stratified analysis; however, a priori subgroup specifi-
cation is strongly recommended to control type I error. In summary,
selecting a high-risk sample using inclusion and exclusion criteria
FIGURE 2. Medians (black lines) are not statistically different for pe
Wilcoxon test). The means (black diamonds) show more of a differen
influenced by the very high titer levels. However, clear differences be
tributions and this region corresponds to a high risk of allergy (filled red
plots (right) examine how the randomized groups are represented propo
the overall mean distribution, which corresponds to a very low risk of
the avoidance group grows when moving to higher titer levels and sig
with known population prevalence estimates can allow results to be
extrapolated to a general population, thus improving the study’s
external validity. However, this approach has limitations if the
intervention works differently for high- and low-risk groups.
STATISTICAL METHODS

Statistical powering—choice of alpha and beta

The current paradigm in both prevention and therapeutic trials is
to set the false- positive rate (a) 2 to 4 times lower than the false-
negative rate (b). For example, most studies set an alpha of 0.05
and a beta of 0.1 or 0.2, which represents 90% or 80% power to
reject a null hypothesis with a P value of less than .05. National
Institutes of Health studies have a long history of setting power at
anut-specific Ara h2 in the box and violin plot (left) (P > .05 by
ce in the opposite direction as the medians do because they are
tween the randomized groups exist in the upper ends of the dis-
diamonds represent allergic participants). The proportion density
rtionally across the range of titer values. The black diamonds mark
peanut allergy. The proportion of the distribution encompassed by
nificantly diverges (P < .05) at the dashed reference line.



Z (Randomized assignment to 
early consumption of allergen)

X (practices early 
consumption or avoidance)

U (unmeasured confounders, 
e.g. genetic predispositions 
towards development of 
allergy or dislike of allergen 
taste etc., which ultimately 
influence both the compliance 
of X and the outcome Y).

Y (development of allergy)

Arrows (   ) denote a causal effect.  For example:
• Randomization has a causal effect on early consumption but it does not cause or

prevent the development of allergy, except through its effect on early
consumption or avoidance.  In other words, Z is independent of Y given X and U.

• However, randomization does not fully determine treatment received (X).
Measured and unmeasured confounders (U) also affect treatment received (X).

• These confounding factors (U) affecting compliance and allergy are what an 
instrumental variable analysis controls for to produce an unbiased estimate of
the effect of early consumption on the development of allergy.      

Instrumental Variable Analysis
Causal Diagram

FIGURE 3. Instrumental variable analysis causal diagram.
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90% for definitive studies. The principal precept of bioethics,
“primum non nocere,” or “first, do no harm,” motivates the rela-
tively lower type I (false- positive) versus type II (false-negative) error
rates for treatment studies. For example, drug approval often oper-
ates under a conservative, precautionary principle when evaluating
compounds as safe and effective. This tradeoff seems appropriate
when the consequences of a spurious finding are harmful, for
example, the introduction of a drug with known side effects.
However, an unbalanced acceptance of type II error over type I error
can have different consequences for prevention trials.

The practice of preventative medicine generally does not have
harmful consequences. For example, the early introduction of peanut
has been shown to be safe and nutritious in a high-risk population of
infants.11 In these scenarios, the “do no harm” principle could
instead be applied to type II error (false negative) because failing to
overturn a harmful recommendation (eg, early avoidance of peanut
during an immunological window of opportunity to induce toler-
ance) would be considered equally, if not more harmful than a
spurious (false-positive) finding. A beta of 0.2 (80% power) leaves a
20% chance of not finding an effect, if one exists. The consequence
for a false-negative outcome in a prevention study setting can have
harmful public policy implications because failing to reject the null
hypothesis results in the continuing implementation of harmful
recommendations (eg, avoidance of peanut in early childhood).
According to Lilford and Johnson,12 “if the ‘costs’ (including all the
side effects) of each treatment are the same, then alpha should equal
beta, since either a false-positive or false-negative result would be
equally undesirable.3-5.if the specified improvement in outcome
(delta) is sufficient to outweigh the known disadvantages of the more
costly treatment, then a false-negative trial result is no longer pref-
erable to a false-positive.” Although the context is study dependent,
generally, acceptance of a higher type II error rate in a prevention



TABLE II. Complier average causal effect (CACE) model

CACE model Treatment Control

Status Compliance rate Symbol No. allergic n Proportion Symbol No. allergic n Proportion

Compliant 54% Ct 0 310 0.00% Cc* 8* 324* 2.47%*

Not compliant 46% Nt 7 261 2.68% Nc* 7* 273* 2.68%*

Overall outcome (ITT row) T 7 571 1.23% C 15 597 2.51%

The CACE is a measure of the causal effect of the intervention on the people who received it as intended by the original group allocation. The model assumes that the difference
between the 2 bolded allergy rates above (2.68% and 2.51%) are due to confounding factors “U” (Figure 3) that affect compliance (X) and allergy (Y). These confounding
effects are “pulled out” to create the adjusted allergy rate (2.47%) in the theoretical compliant stratum of the control arm (Cc).
Assumptions: Members of the control group have the same probability of being a “noncomplier” as do members of the intervention group. Being offered early introduction of
peanut (as opposed to actually eating) has no effect on the outcome.
*Calculated rather than observed values using the CACE approach.
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trial can have worse consequences than in a therapeutic trial. Simi-
larly, spurious type I errors in prevention trials are generally more
desirable than in therapeutic trials. Scientists planning studies to
overturn potentially harmful health practices should therefore
consider designs where the false-negative (type II) error rate is just as
important as the false-positive (type I) error rate.

1-sided or 2-sided hypothesis testing

It is most common to use a 2-sided hypothesis test for both pre-
vention and therapeutic trials. A 2-sided test allots half of the alpha
(typically 0.05) to testing statistical significance in one direction and
half of the alpha to testing statistical significance in the other direction.
This equates to testing simultaneously whether a treatment or inter-
vention is better or worse than a control. Because treatments can
unexpectedly cause harm or be significantly less efficacious than a
control, 2-sided tests are often justified. However, there are circum-
stances in which 1-sided tests are appropriate. Greenland et al13 pro-
vide a guide to common statistical misinterpretations, one of which is
that researchers should always use 2-sided P values; they should not.
The construction of a hypothesis test shouldmatch the hypothesis. For
example, a 1-sided test is appropriate if researchers are only interested
in a difference that goes in one direction, and, hypothetically, if a large
difference was observed in the unexpected direction, they would take
the same action as if no difference at all was observed. Many authors
have given justification and examples where 1-sided tests are appro-
priate including toxicity studies, safety data monitoring, testing
whether a new drug or intervention is at least as good as one currently
in use, and laboratory studies where biological constraints limit a
difference in one direction.13-16 For example, if researchers were
interested in testing whether a new intervention was “at least as good”
as the LEAP intervention (eg, smaller amounts of recommended daily
consumption of peanut), this could appropriately be designed using a
1-sided test.17 Importantly, Koch and Gillings18 have shown that
under typical conditions of hypothesis testing, the required sample size
for 80% and 90% power is increased by 27% and 23%, respectively,
for a 2-sided test. As discussed earlier, prevention studies typically
require larger sample sizes and longer durations. Thus, unnecessarily
TABLE III. Comparison of treatment effects (relative risks and risk
differences) by type of analysis

Analysis Calculation Relative risk Risk difference

ITT T/C 48.8% �1.29%

PP Ct/C 0.0% �2.51%

CACE* Ct/Cc* 0.0%* �2.47%*

*Calculated rather than observed values using the CACE approach.
increasing the sample size to use alpha in a direction of no clinical
importance comes with large cost and value implications and should
not be practiced simply because 2-sided tests are conventionally used.
ANALYSIS INNOVATIONS TO ADDRESS DILUTION

EFFECTS
The analysis shown in Figure 1 demonstrates the decrease in

statistical power that occurs when a study sample has a high pro-
portion of healthy participants—this is known as a dilution effect.
During the design phase of a trial, dilution effects are addressed with
sample size calculations. However, sample sizes are typically based
on a comparison of the primary end point (eg, the difference in the
proportion with allergy between randomized groups), and more
variable secondary end points (eg, specific-IgE titer levels) can often
be underpowered to detect clinically meaningful effects. Neverthe-
less, a gain in statistical efficiency can be obtained by selecting more
powerful analysis methodologies. For example, Aban et al19 have
demonstrated increased efficiency using the Poisson or negative
binomial distribution instead of commonly used methods such as
the Wilcoxon test or the t test. Moreover, statistical innovations in
vaccine trials (another type of prevention study) have recently been
developed to provide more powerful methods to address dilution
effects. These testing procedures compare the randomized groups by
essentially removing an equal number of zeros (or patients with
undetectable titer levels) from each group before performing a per-
mutation test on the remaining, less-diluted sample.20,21

Last, an approach used in the LEAP study secondary analyses
was to examine the upper end of the peanut-specific IgE distri-
bution, rather than the means or medians. The LEAP study
evaluated a high-risk cohort and after 5 years of follow-up, 17%
developed peanut allergy in the Avoidance (control) group
compared with 3% in the Consumption (intervention) group.
Therefore, if peanut consumption was responsible for modu-
lating IgE production, it might have done so in only 14% (17%
minus 3%) of those in the Consumption group who would have
developed allergy, had they not consumed peanut. In other
words, the testable assumption was that if immunological dif-
ferences exist in IgE between the randomized groups, these dif-
ferences could be diluted by the 86% who were “destined” not to
be allergic. Moreover, the rationale was that these differences
would not be apparent when examining the means or medians of
the overall distribution. Therefore, the upper end of the IgE
distribution was considered more relevant because this region
corresponds to levels more highly predictive of peanut allergy.
Bootstrap sampling was used to determine if and where the
upper percentiles of the IgE distribution significantly differed



FIGURE 4. An estimated allergy rate with (red) and without (green) allergic imputation of dropouts under 4 different scenarios. The top
row represents 2 prevention studies with allergy rates of 10% and 20%. The bottom row represents 2 therapeutic studies with allergy
rates of 80% and 90%. As dropout increases (X-axis), a divergence is noted between the estimated allergy rates with and without
imputation. For the prevention studies, because prevalence is low, no imputation better approximates the true allergy rate. For the
therapeutic studies, because most are expected to be allergic, imputation has less effect. This simplified example assumes differential
dropout among the nonallergic participants in all scenarios.
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between the randomized groups. A progressive divergence in very
high peanut-specific IgE titers was detected and displayed using
proportion density plots. Reference lines were drawn to indicate
where the distributions began to differ at the alpha ¼ 0.05 level
of significance (Figure 2). These types of analyses underscore the
utility of implementing unique statistical methods for prevention
studies, as they are useful for identifying the consequences of an
intervention when dilution effects are present.
ANALYSIS METHODS TO DEAL WITH POOR

COMPLIANCE, DROPOUT, AND MISSING DATA

Adjusting for noncompliance using instrumental

variable analysis

The literature describing analysis methods to address poor
compliance, dropout, and missing data is vast and context-specific.
The objective is not to provide a review, but rather to present a
type of instrumental variable analysis that can be used to estimate a
nonbiased intervention effect for food allergy prevention trials, while
controlling for noncompliance. In addition, relevant imputation
methods and sensitivity analyses for binary outcomes will be
recommended.

Most clinical trials specify the intention-to-treat (ITT) analysis as
primary but also include a supporting, per-protocol (PP) analysis.
Each analysis has its advantages and disadvantages. Generally, the
ITT approach answers the question whether the offer and initial
agreement of treatment to the intervention population is effective.
To more directly address if receiving the treatment is effective, the
PP analysis is often recommended. However, with respect to a
randomized comparison, the PP approach can be biased unless the
probability of taking the treatment is random with respect to all
predictors of the study’s outcome. The ITT effect is thought to be an
overly conservative measure of an intervention’s effect when
compliance is poor, as participants who received little or no inter-
vention are accounted for in the intervention group. The PP anal-
ysis, although biased, is desirable because it directly measures the
effect of treatment among the participants who received the inter-
vention. Instrumental variable analyses in general and the complier
average causal effect (CACE) model in particular have been recently
proposed as nonbiased methods to estimate the causal effect of
treatment.22-28 Figure 3 depicts a causal diagram typically used to
illustrate instrumental variable methods, and Tables II and III
demonstrates how the CACE model estimates an unbiased inter-
vention effect using the EAT study data.

This reanalysis of the EAT study data uses summary allergy
and compliance rates from the New England Journal of Medicine
figures6 and limits PP compliance to only the Early Introduction
group (intervention arm). Although there were also noncompliers
in the Standard Introduction group (control arm), the CACE
analysis is focused on compliance in the intervention group only.
Moreover, under the assumption that randomization balances all
factors, the CACE method projects the noncompliant rate in the
intervention arm onto the control arm. By comparing the rate of
allergy in the noncompliant, intervention arm (2.68%) with that
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FIGURE 5. Diagnostic algorithm for determination of peanut allergy in the absence of peanut-challenge results using dietary and reaction
history, SPT, and peanut-specific IgE. An oral food challenge was used for the assessment of peanut allergy for 96% (617 of 640) of the
participants; this diagnostic algorithm was therefore required for 13 study participants whose outcomes were as follows: 7 were peanut
allergic, 4 were peanut tolerant, and 2 were nonevaluable. SPT, Skin prick test.
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in the overall control arm (2.51%), an estimate of confounding
(symbolized by U in Figure 3) can be obtained. This con-
founding effect is removed from the PP CACE intervention ef-
fect. Typically, the CACE effect is between the ITT and PP
estimates. In the case of the EAT study, the unbiased CACE
estimate (risk difference of 2.47%) is nearly equal to the PP effect
(2.51%). The similarity of the PP and CACE effect is a result of
the noncompliant allergy rate in the intervention arm being
approximately equal to the allergy rate in the control arm (ie,
confounding factors [U] are not highly associated with allergy
[Y]). Last, Jo29 has shown using Monte-Carlo simulations that the
CACE model is just as powerful, if not more powerful than the
ITT analysis under many scenarios.

The CACE model is relevant to food allergy trials because
compliance with the intervention is typically defined as a successful
outcome (ie, tolerating the food allergen of interest). For example,
the PP analysis in this setting often excludes allergic participants only
from the intervention group who cannot comply with continued
consumption of the food. Participants may be noncompliant for
many reasons, but there always exists the belief or criticism that the
PP analysis is not credible because of reverse causality (ie, the par-
ticipants are noncompliant because they are allergic or are becoming
allergic; hence, they are unable to eat the recommended food
allergen). Because the PP analysis excludes only these hypothetical
participants from the intervention group, it may produce a biased
estimate of the intervention’s effect. The appeal of the CACE model
is that it adjusts for this apparent bias by introducing the following
counterfactual: if those randomized to the control group had been
randomized to the intervention group, they would have had an equal
rate of noncompliance compared with the observed noncompliance
in the intervention group. Moreover, this hypothetical non-
compliant group would have an allergy rate equal to that of the



FIGURE 6. Panel A displays a focused subset of sensitivity analyses from more probable imputation scenarios. Panel B displays
comprehensive results from all 4510 chi-square tests. The X and Yaxes indicate imputed allergy rates within the sample of participants
whowere not assessed for the primary outcome (the missing sample). The red “tipping point” region illustrates scenarios where the study
would fail to reject the null hypothesis. The leftmost green region illustrates “best-case” scenarios where the null hypothesis is rejected
and the PP EATanalysis is confirmed. Conversely, the rightmost green region of Panel B depicts a “worst-case” scenario where the null
hypothesis is rejected but in the opposite direction (ie, the allergy rate is significantly higher in the intervention group than in the control
group). Last, the outlined box in the lower left corner of panel B displays more likely imputed allergy rates, and this region is expanded in
panel A. Each imputed participant is represented as small squares, illustrating exactly how the imputed cases of allergy in each group
influence the tipping point analysis.
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observed noncompliant, intervention subgroup. Under this counter-
factual, the empirical noncompliant allergy rate in the intervention
group can be “pulled out” of the control group. Importantly, this
adjusted allergy rate has randomization preserved and is therefore an
unbiased estimate of the treatment effect.
Sensitivity analyses for missing data
Missing data occur for many different reasons and can have

drastic consequences on the interpretation of a study’s primary
analysis. For example, if allergic participants in the intervention arm
discontinue a study for fear of having an oral food challenge, this will
clearly bias results by overestimating the effectiveness of the inter-
vention. Conversely, if participants are not allergic and drop out
because they perceive no continued benefit, the intervention effect
will be underestimated. It is a misconception that a conservative and
appropriate method to overcome this bias is simply to impute an
allergic outcome to missing data. In prevention studies, the rate of
allergy can be less common than the rate of dropout; therefore,
allergic imputation can produce more bias than simply analyzing the
nonimputed, complete-case data set. To properly address missing
data, sensitivity analyses should be undertaken to examine the reason
for dropout and to develop imputation methods for replacing
missing values with probable outcomes. Generally, for a prevention
study, the most probable outcome is a nonallergic participant;
however, for a treatment study, the most probable outcome is an
allergic participant. Figure 4 uses simulated data to demonstrate how
simply imputing an allergic result to all missing outcomes can
introduce progressively more bias when allergy rates are low and
dropout is high. This simulation experiment illustrates how com-
plete case analysis (no imputation) is preferred because it produces
less bias than “conservative” allergic imputation.
As an a priori method to address missing data, the LEAP study
used a diagnostic algorithm to impute outcomes for participants who
refused an oral food challenge (Figure 5). Worst-case imputation was
used to show that the study’s findings were robust to missing data.
However, unlike the LEAP study, many prevention trials have small
treatment effects, a low prevalence of disease, and higher than
average dropout rates, with the consequence that a worst-case
imputation analysis will present an unrealistically low estimate of
an intervention’s effectiveness. Although the specification of analysis
methods is study specific, for prevention studies, scientists should
consider developing algorithms (a priori) to impute missing data
when possible. For missing data that cannot reasonably be imputed,
sensitivity analyses should be used to support the primary, complete-
case ITT analysis. These sensitivity analyses will assess the robustness
of a study’s findings with respect to missing data without intro-
ducing assumptions and bias into the primary ITT analysis. Last,
Liublinska and Rubin’s30 “enhanced tipping-point displays” are
recommended for binary data because they help visualize sensitivity
analyses via an easy to comprehend heat map. Figure 6 shows an
example tipping point analysis derived from data presented in
Figure 4 part B of the Perkin et al6 study. The heat maps show
results from sensitivity analyses from all possible combinations of
imputed missing data (panel B) along with the more probable
imputation scenarios (panel A).
DISCUSSION
The recent rise in food allergy and current lack of therapies has

prompted an increase in clinical research studies aimed at the
prevention of food allergy. Ideally, interventions aimed at
preventing food allergy in a general population would be trialed
using adequately powered population-based samples. However,
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logistical and financial constraints usually mandate that smaller,
high-risk cohorts be enrolled. Some of the presented recommen-
dations, for example, a lower beta, will result in even larger sample
sizes. However, reducing the chances of a false-negative trial may
be justified when the study hypothesis aims to overturn a harmful
medical recommendation (eg, the early avoidance of allergenic
foods). In addition, several suggestions are made to increase sta-
tistical power, minimize the introduction of bias, and better esti-
mate intervention effects. Together these recommendations may
offset the costs associated with lowering type II error. Finally,
CACE models, imputation methods, and sensitivity analyses are
suggested as supplements to a primary complete-case ITT analysis.
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